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Abstract 

 
We introduce nonlinear large-signal scattering (S) parameters, a new type of frequency-

domain mapping that relates incident and reflected signals for sparse-tone inputs. We present a 
general form of nonlinear large-signal S-parameters and show that they reduce to classic S-
parameters in the absence of nonlinearities. Nonlinear large-signal impedance (Z) and admittance 
(Y) parameters are also introduced, and equations relating the different representations are 
derived. We illustrate how nonlinear large-signal S-parameters can be used as a tool in the 
design process of a nonlinear circuit, specifically a single-diode 1 GHz frequency-doubler. For 
the case where a nonlinear model is not readily available, we developed a method of extracting 
nonlinear large-signal S-parameters obtained with artificial neural network models trained with 
multiple measurements made by a nonlinear vector network analyzer equipped with two sources.  

 
1.  Introduction 

 
Vector network analyzers (VNAs) are one of the most versatile instruments available for 

RF and microwave measurements. They are used to measure complex scattering parameters (S-
parameters) of linear devices or circuits. RF engineers use them to verify their designs, confirm 
proper performance, and diagnose failures. A VNA works by exciting a linear device under test 
(DUT) with a series of sine wave signals, one frequency at a time, and detecting the response of 
the DUT at its signal ports. Since the DUT is linear, the input and output signal frequencies are 
the same as the source; these signals can be described by complex numbers that account for the 
signals’ amplitudes and phases. The input-output relationships are described by ratios of 
complex numbers, known as S-parameters. For a two-port network, four S-parameters 
completely describe the behavior of a linear DUT when excited by a sine wave at a particular 
frequency. Although the measurement of S-parameters by VNAs is invaluable to the microwave 
designer for modeling and measuring linear circuits, these measurements are oftentimes 
inadequate for nonlinear circuits operating at large-signal conditions, since nonlinearities transfer 
energy from the stimulus frequency to products at new frequencies. Thus, conventional linear 
network analysis, which relies on the assumption of superposition, must be replaced by a more 
general type of analysis, which we refer to as nonlinear network analysis.  
______________________________________________________________ 
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 Nonlinear network analysis involves characterizing a nonlinear device under realistic, 
large-signal operating conditions. To do this, complex traveling waves (rather than ratios) are 
measured at the ports of a DUT not only at the stimulus frequency (or frequencies), but also at 
other frequencies where energy may be created. Assuming the input signals are sine-waves and 
the DUT exhibits neither sub-harmonic nor chaotic behavior, the input and output signals will be 
combinations of sine-wave signals, caused by the nonlinearity of the DUT in conjunction with 
impedance mismatches between the measuring system and the DUT. If a single excitation 
frequency is present, new frequency components will appear at harmonics of the excitation 
frequency, and if multiple excitation frequencies are present, new frequency components will 
appear at the intermodulation products as well as at harmonics of each of the excitation 
frequencies. In practice, there will be a limited number of significant harmonics and 
intermodulation products. The set of frequencies at which energy is present and must be 
measured is known as the frequency grid. 

 
Nonlinear vector network analyzers (NVNA), are capable of providing accurate 

waveform vectors by acquiring and correcting the magnitude and phase relationships between 
the fundamental and harmonic components in the periodic signals [1-5]. An NVNA excites a 
nonlinear DUT with one or more sine wave signals and detects the response of the DUT at its 
signal ports, where the input and output signals will be combinations of sine wave signals due to 
the nonlinearity of the DUT in conjunction with mismatches between the system and the DUT. 
With these facts in mind, the major difference between a linear VNA and an NVNA is that a 
VNA measures ratios between input and output waves one frequency at a time while an NVNA 
measures the actual input and output waves simultaneously over a broad band of frequencies. 

 
Even though S-parameters cannot adequately represent nonlinear circuits, some type of 

parameters relating incident and reflected signals are beneficial so that the designers can “see” 
application-specific engineering figures of merit that are similar to what they are accustomed to. 
In the first part of this paper, we propose definitions of such ratios that we refer to as nonlinear 
large-signal scattering (S) parameters. We also introduce nonlinear large-signal impedance (Z) 
and admittance (Y) parameters, and present equations relating the different representations. Next, 
we make two simplifications when considering the cases of a one-port network with a single-
tone excitation and a two-port network with a single-tone excitation. 

 
For existing nonlinear models, we can readily generate nonlinear large-signal S-

parameters by performing a harmonic balance simulation. For devices, with no model available, 
we can extract these parameters from artificial neural network (ANN) models that are trained 
with multiple frequency-domain measurements made on a nonlinear DUT with an NVNA. To 
illustrate applications and generation of nonlinear large-signal S-parameters, we present two 
examples. First, we illustrate how nonlinear large-signal S-parameters can be used as a tool in 
the process of designing a simple nonlinear circuit, specifically a single-diode 1 GHz frequency-
doubler circuit. And secondly, we describe a method for generating nonlinear large-signal S-
parameters based upon ANN models trained on frequency-domain data measured using an 
NVNA. This set-up is similar to that introduced by Verspecht et al. [6-7] to generate ‘nonlinear 
scattering functions.’ We compare a diode circuit model, generated using our method, to a 
harmonic balance simulation of a commercial device model.  

 



2.  Nonlinear Large-Signal Scattering Parameters 
 

In this section, we introduce the concept of nonlinear large-signal scattering parameters. 
Like commonly used linear S-parameters, nonlinear large-signal scattering (S) parameters can 
also be expressed as ratios of incident and reflected wave variables. However, unlike linear S-
parameters, nonlinear large-signal S-parameters depend upon the signal magnitude and must 
account for the harmonic content of the input and output signals since energy can be transferred 
to other frequencies in a nonlinear device. After presenting the general form of nonlinear large-
signal S-parameters, we also introduce nonlinear large-signal impedance (Z) and admittance (Y) 
parameters, and present equations for relating the different representations. Next, we make two 
simplifications in which we consider the cases of a one-port network with a single-tone 
excitation and a two-port network with a single-tone excitation. 
 
2.1.  General Form 

 
Consider an N-port network. Normalized wave variables ajl and bjl at the jth port and lth 

harmonic are proportional to the incoming and outgoing waves, respectively, and may be defined 
in terms of the voltages associated with these waves as follows:  
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where V+
jl and V-

jl represent voltages associated with the incoming and outgoing waves in the 
transmission lines connected to the jth port and containing frequencies of the lth harmonic; Zoj 
represents the characteristic impedance of the line at the jth port. 

 
The nonlinear large-signal scattering matrix S of the network expresses the relationship 

between a’s and b’s at various ports and harmonics through the matrix equation 
  

                                                                                        ,ab S=                                                                            (2) 

 
where b and a are (NxM)-element column vectors. Here N refers to the number of ports and M 
refers to the number of harmonics being considered. Matrix S is an (NxM)2-element square 
matrix. We assume all a’s and b’s are phase referenced to a signal present at the fundamental 
frequency, such as a11, to enforce time invariance. 
 

As an example, consider a two-port network with 3 harmonics; Eq. (2) then becomes 
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where  
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For each nonlinear large-signal scattering parameter Sijkl the index i refers to the port number of 
the b wave, the index j refers to the port number of the a wave, k is the harmonic index of the b 
wave, and l is the harmonic index of the a wave. The vectors āj and bi are (M=3)-element 
vectors given by 
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Equation (3) can be expanded as follows 
 

                                       (6) 

 
Note that in each of the four sub-matrices, the diagonal elements contain the same-frequency 
scattering parameters, the upper right elements contain the frequency down-conversion scattering 
parameters, and the lower left elements contain the frequency up-conversion scattering 
parameters. If the device under consideration contains no nonlinearities (i.e. no power is 
transferred to other frequencies), then Eq. (6) reduces to 
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which is the matrix representation for the well-known linear S-parameters involving three 
excitation frequencies. 
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2.2  Nonlinear Large-Signal Impedance Parameters 
 
Rather than expressing the relationship between a’s and b’s in terms of a nonlinear large-

signal scattering matrix S, we can alternatively express the relationship between voltages (V’s) 
and currents (I’s) in terms of a nonlinear large-signal impedance matrix Z, as follows 

                                                                                    ,IV Z=                                                                                 (8) 

where V and I are (NxM)-element column vectors. Once again N refers to the number of ports 
and M refers to the number of harmonics being considered. Z is an (NxM)2-element square 
matrix.  

 
For a two-port network with 3 harmonics, Eq. (8) becomes 
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where  
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For each nonlinear large-signal impedance parameter Zijkl, the index i refers to the port number 
of the voltage V, the index j refers to the port number of the current I, k is the harmonic index of 
V, and l is the harmonic index of I. The vectors Vi and  Ij are (M=3)-element vectors given by 
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The S and Z matrices can be expressed in terms of one another, if we know how a and b 
relate to V and I. From Eq. (1), we can express Vik in terms of ajl and bik as follows:  

                                                                     ,)( ikikoiikikik baZVVV +=+= −+                                               (12) 

where the subscripts refer to the ith port and the kth harmonic. We can similarly express Ijl as 
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where the subscripts refer to the jth port and at the lth harmonic.If Zo1=Zo2, S and Z are related as 
follows 
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where 
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is the normalized impedance matrix. Alternatively, we can solve for Z in terms of S. If Zo1=Zo2, 
we obtain 
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2.3.  Nonlinear Large-Signal Admittance Parameters 

 
We can also express the relationship between voltages (V’s) and currents (I’s) in terms of 

a nonlinear large-signal admittance matrix Y, as follows 

                                                                                     ,VI Y=                                                                             (17) 

where Y is an (NxM)2-element square matrix. The S and Y matrices can also be expressed in 
terms of one another. If Zo1=Zo2, S and Y are related as follows:  
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where Y' is the normalized admittance matrix. Alternatively, we can solve for Y in terms of S. If 
Zo1=Zo2, we obtain 
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2.4.  One-Port Network with Single-Tone Excitation 
 
For a one-port network with a single-tone excitation at the fundamental frequency, we 

can extract a reflection coefficient given by  
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The limitation imposed on the equation is that all other incident waves other than a11 equal zero. 
Instead of simply taking the ratio of b1k to a11, we reference the phase of b1k to that of a11. To do 
this, we must subtract k times the phase of a11 from b1k [8]. 
  

For a one-port network with a single-tone excitation at the fundamental frequency, we 
can show that the equation relating S and Z reduces to the same well-known equation for the 
linear case if we assume that no energy is redistributed into the form of frequency down-
conversion. To illustrate this, we will once consider only M=3 harmonics, for the sake of 
simplicity. Equation (6) reduces to  

 

     ,
0
0
11

113311321131

112311221121

111311121111

13

12

11
































=















 a

b
b
b

SSS
SSS
SSS

                                              (21) 

 
for a one-port network with a single-tone excitation a11. This matrix can be rewritten as a set of 
three equations:  
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Likewise, Eq. (9) reduces to 
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where the voltage V11 at the first harmonic can be expressed as 
 

                                                                     .13111312111211111111 IIIV ZZZ ++=                                      (24) 

 
Substituting Eqs. (12) and (13) into Eqs. (22) and (24), we can solve for Z1111 as 
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If no energy is redistributed into the form of frequency down-conversion (i.e., Z1112=Z1113=0), 
then Eq. (25) reduces to the same equation as in the linear case:  
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A similar derivation can be performed to show that  
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Once again, if no energy is transferred to frequency down-conversion (i.e., Y1112=Y1113=0), then 
Eq. (27) reduces to the same equation as in the linear case:  
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2.5.  Two-Port Network with Single-Tone Excitation 

 
For a two-port network excited at port 1 by a single-tone excitation at the fundamental 

frequency, we can extract an input reflection coefficient given by  
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As with Eq. (20), instead of simply taking the ratio of b1k to a11, we phase reference to a11. To do 
this we must subtract k times the phase of a11 from b1k. The limitation once again imposed on the 
equation is that all other incident waves other than a11 equal zero. 

 
Another valuable parameter, the forward transmission coefficient, is similarly extracted 

as follows 
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This parameter provides a value of the gain or loss through a device either at the fundamental 
frequency or converted to a higher harmonic frequency. 

 
In addition to the previous two parameters, given in Eqs. (29) and (30), an output 

reflection coefficient can also be useful when trying to determine the output matching network. 
If a nonlinear DUT is operating under its normal drive condition (a11 at some constant signal 
level), and a second source, excited by a small-signal tone at frequency fk, is placed at port 2 of 
the DUT, one of the equations in the matrix defined by Eq. (6) reduces to   
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If we solve Eq. (31) for S22kk, we obtain 
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In Eq. (32), the output reflection coefficient S22kk obviously cannot be determined by simply 
taking the ratio of b2k to a2k, since the ratio also depends on a11 through S21k1. When a2k is small, 
we can generate another signal ∆a2k that is offset slightly from the frequency of interest fk by ∆fk. 
Eq. (31) then becomes 

                                                         ( ) ,22221112122 kkkkkkk aaabb ∆++=∆+ SS                                         (33) 

where ∆a2k << a2k and S22kk remains constant over this frequency range. Subtracting Eq. (31) 
from Eq. (33) gives 

                                                                                 ,2222 kkkk ab ∆=∆ S                                                             (34) 

which does not depend on S21k1. If we solve Eq. (34) for S22kk, we obtain 
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Equation (35) is a quasi-linear approximation of the output reflection coefficient under normal 
operating conditions, and is consistent with the definition of “Hot S22,” which has been used to 
measure the degree of mismatch at the output port of a power amplifier at its excitation 
frequency. 
 

3. Using Nonlinear Large-Signal S-Parameters to Design a Diode Frequency-Doubler 
Circuit with a Harmonic-Balance Simulator 

 
Resistive frequency doublers operate on the principle that a sinusoidal waveform is 

distorted by the nonlinear I/V characteristic of a Schottky-barrier diode [9]. This distortion causes 
power to be generated at higher-harmonic frequencies. The design of such doublers involves 
separating the input and output signals by filters and determining the optimum input and output 
matching circuits, as illustrated in Fig. 1. Although single-diode resistive doublers are not very 
efficient (analysis predicts a conversion loss of at least 9 dB [10]), we chose this circuit because 
it is simple enough to clearly illustrate how nonlinear large-signal S-parameters can be used as a 
design tool. In this example, we use a compact model to simulate a commercial Schottky-barrier 
diode. The model includes a series resistance Rs of 14 Ω, a junction capacitance at zero voltage 
Cj0 of 0.08 pF, and a reverse saturation current Is of 3×10-10 A. 
 

Here, we describe the various steps involved in designing a single-diode 1 GHz 
frequency-doubler circuit. Since we are using a simulator, we can force the stimulus to consist of 
only |a11|, with all other amn terms equal to zero, where m and n are positive integers such that m 
≠ 1 and n ≠ 1. (In practice, this condition can never be completely realized in a measurement 



environment.) With only an a11 component present, we need only consider the parameters S11k1 
(Eq. 29), which is a measure of the large-signal input match at the kth harmonic, as well as the 
parameter S21k1 (Eq. 30), a measure of the large-signal conversion loss or gain at the kth 
harmonic, plus the quasi-linear S2222 (Eq. 35) to determine the output matching network at the 
second harmonic. Figure 2 illustrates the setups required for determining these parameters. 
Determining S2222 requires a second source at port 2 at a frequency slightly offset from ω2 . 

 
In the first step, we perform a simulation on the diode alone and use S2121 to determine 

the optimum bias condition for converting power from the fundamental frequency to the second 
harmonic. Second, we add filtering networks to separate the input and output signals, and verify 
their proper performance by looking at S2111 and S1121. Third, we make use of S1111 to determine 
the input matching network. Fourth, with the input matching network in place, we place a second 
source at port 2 and find the quasi-linear value of S2222, which allows us to determine the output 
matching network. Fifth, we use the optimization feature of the simulator to minimize S1111 by 
varying the line lengths of the input and output matching circuits. And finally, sixth, we add 4 
GHz and 6 GHz filters at the output (and re-determine the proper input and output matching 
circuits) in order to reduce the values of S2141 and S2161, which in turn increases the value of 
S2121 and cleans up the output waveform. By the final stage of the design, we have created a 
doubler with an overall power gain of -9.56 dB, not far from the maximum possible predicted 
value of -9 dB. Table 1 lists the simulated values for S1111 – S1161, S2111 – S2161, G2, and G2/G 
for each of the design stages of the diode frequency doubler. Here G represents the expanded 
power gain and G2 is the expanded power gain confined to the second harmonic [11]. Figure 3 
shows the final design of the single-diode resistive frequency doubler, and Figure 4 shows the 
time-domain plots of a1 and b2 for the simulated 1 GHz frequency-doubler circuit. 
 
 
Table 1.  Simulated values for S1111 – S1161, S2111 – S2161, G2, and G2/G for each of the design stages of 
the diode frequency doubler. 
 

 
 

Quantity 

 
 

Diode Only 

 
Diode w/ 
1, 2GHz 
Filters 

 
Diode w/  
1, 2 GHz 

Filters, Input 
Match 

Diode w/  
1, 2 GHz 

Filters, Input 
& Output 

Match 

Diode w/  
1, 2 GHz 

Filters, Input 
& Output 

Match Opt. 

Diode w/  
1, 2, 4, 6 

GHz Filters, 
Input & 
Output 

Match Opt. 
|S1111| 
|S1121| 
|S1131| 
|S1141| 
|S1151| 
|S1161| 

0.464 
0.170 

3.2×10-2 

2.4×10-2 
1.7×10-2 
3.9×10-3 

0.569 
1.3×10-5 

4.9×10-3 

3.5×10-2 
1.1×10-2 
1.0×10-6 

9.4×10-2 

8.8×10-6 

4.0×10-3 

3.7×10-2 
1.1×10-2 
1.0×10-6 

8.7×10-2 

8.0×10-6 

1.4×10-2 

2.4×10-2 
1.9×10-3 
9.7×10-7 

6.0×10-3 

9.5×10-6 

1.1×10-2 

2.8×10-2 
2.3×10-3 
1.1×10-6 

2.1×10-4 
9.9×10-6 
2.2×10-2 
5.1×10-2 
2.5×10-3 
2.0×10-6 

|S2111| 
|S2121| 
|S2131| 
|S2141| 
|S2151| 
|S2161| 

0.536 
0.170 

3.2×10-2 

2.4×10-2 
1.7×10-2 
3.9×10-3 

3.3×10-5 

0.268 
3.5×10-7 

3.5×10-2 
7.6×10-7 
2.0×10-2 

4.0×10-5 

0.326 
3.3×10-7 

4.5×10-2 
1.1×10-6 
2.5×10-2 

4.0×10-5 

0.328 
1.5×10-6 

4.1×10-2 
2.5×10-6 
2.6×10-2 

4.0×10-5 

0.331 
1.1×10-6 

4.0×10-2 
2.3×10-6 
2.9×10-2 

5.0×10-5 
0.332 

1.7×10-7 
1.4×10-6 
3.0×10-6 
2.7×10-6 

G2 (dB) 
G2/G 

-14.16 
0.091 

-9.73 
0.978 

-9.69 
0.976 

-9.65 
0.979 

-9.60 
0.978 

-9.56 
0.999 
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Figure 1.  Block diagram of a single-diode 
resistive doubler. 

 
Figure 2.  Nonlinear large-signal S-parameters 
used to characterize a two-port device excited by a 
single-tone signal at port 1. 
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Figure 3. Final design of the single-diode 
resistive frequency doubler. Electrical lengths 
shown are all at 1 GHz. 

Figure 4.  Time-domain plots of a1 and b2 for the 
simulated 1 GHz frequency-doubler circuit. 
 

 
 
 
 

4. Determining Nonlinear Large-Signal S-Parameters from  
Artificial Neural Network Models Trained with Measurement Data 

 
Although nonlinear large-signal S-parameters can be easily determined for an existing model in 
a commercial harmonic balance simulator by forcing all a’s other than a11 to zero, they cannot be 
determined directly from measurements. With currently available NVNAs, the nonlinear DUT, 
in conjunction with the impedance mismatches and harmonics from the system make it 
impossible to set all a’s other than a11 (assuming port 1 excitation) to zero. In order to overcome 
this obstacle, we propose a method [12] that makes use of multiple measurements of a DUT 
using a second source with isolators, as shown in Figure 5. This measurement set-up is similar to 
that introduced by Verspecht et al. [6-7] to generate ‘nonlinear scattering functions.’ 



4.1.  Methodology 
 
To illustrate our technique of generating nonlinear large-signal S-parameters, let us 

consider the case where a DUT is excited at port 1 by a single-tone signal at frequency f1 and 
signal level |a11|. Utilizing a second source, we take multiple measurements of a nonlinear circuit 
for different values of amn [(m≠1)∧ (n≠1)]. We then use these data to develop an artificial neural 
network (ANN) model that maps values of a’s to b’s, as shown in Fig. 6. Once the ANN model 
is trained and verified, the nonlinear large-signal S-parameters are obtained by interpolating b’s 
from the measured results for nonzero values of amn [(m≠1)∧ (n≠1)] to the desired values for amn 
[(m≠1)∧ (n≠1)] equal to zero, as shown in Fig. 7. Alternatively, other conditions may be called 
for, where amn ≠ 0 depending on the desired application-specific figure of merit. 

 
One popular type of ANN architecture, which is used in our work, is a feed-forward, 

three-layer perceptron structure (MLP3) consisting of an input layer, a hidden layer, and an 
output layer [13].  The hidden layer allows for complex models of input-output relationships. 
ANNs learn relationships among sets of input-output data that are characteristic of the device or 
system under consideration. After the input vectors are presented to the input neurons and output 
vectors are computed, the ANN outputs are compared to the desired outputs and errors are 
calculated. Error derivatives are then calculated and summed for each weight until all of the 
training sets have been presented to the network. The error derivatives are used to update the 
weights for the neurons, and training continues until the errors become no greater than prescribed 
values. In our study, we have utilized software developed by Zhang et al. [14] to construct our 
ANN models. 
 

To test our method of generating nonlinear large-signal S-parameters, we fabricated a 
wafer-level test circuit using a Schottky diode in a series configuration.The two-port diode 
circuit was fabricated on an alumina substrate by bonding a beam-lead diode package to the gold 
metalization layer with silver epoxy. The diode was located in the middle of the coplanar 
waveguide (CPW) transmission lines, with short lines connecting the diode to probe pads at both 
ports. We measured the test circuit on an NVNA using an on-wafer VNA line-reflect-reflect-
match (LRRM) calibration, along with signal amplitude and phase calibrations. This process 
places the reference plane at the tips of the wafer probes used to connect with the CPW leads. 

 
For all measurements, the first source, located at port 1, used a sine-wave excitation of 

frequency 900 MHz and magnitude |a11| ≈ 0.178 V (– 5 dBm in a 50 Ω environment) at the probe 
tips. The second source was connected to port 2 and used a sine-wave excitation of frequency 
900 MHz and |a21| ≈ 0.178 V. The diode was forward-biased to +0.2 V through the probe tips. In 
order to obtain the nonlinear large-signal S-parameters, S11k1 and S21k1, the excitation from 
source 1 was held constant, while the phase of source 2 was randomly changed for 500 different 
measurements that varied slightly in magnitude. The nonlinearities in the test circuit, along with 
impedance mismatches, created other input components at higher harmonics. These variations in 
aij allowed us to create an ANN model that could be used to interpolate b’s from the measured 
results for nonzero values of amn [(m≠1)∧ (n≠1)] to the desired values for amn [(m≠1)∧ (n≠1)] 
equal to zero, or alternatively another desired device condition. 
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Figure 5.  Block diagram of a nonlinear vector network analyzer equipped with a second source 
and isolators. 
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Figure 6.  An ANN model that maps real and 
imaginary values of a’s to b’s for different real 
and imaginary values of amn [(m≠1)∧ (n≠1)]. 

  
Figure 7.  An ANN model that interpolates b’s 
from the measured results for nonzero values of 
amn [(m≠1)∧ (n≠1)] to the desired values for amn 
[(m≠1)∧ (n≠1)] equal to zero. Outputs of the 
ANN model yield values of S11k1. 

 
 
 



4.2.  Sensitivity Analysis of ANN Models 
 
Data from the 500 measurements were used to develop two ANN models, one for 

mapping values from the first five harmonics of a1 and a2 (a11, a12, …, a15, a21, a22, …, a25) to the 
first five harmonics of b1 (b11, b12, …, b15), and the other for mapping values from the first five 
harmonics of a1 and a2 to the first five harmonics of b2 (b21, b22, …, b25). We performed a 
sensitivity analysis to determine how many training points, testing points, and hidden neurons 
are required to adequately train the two ANN models.  

 
First, we varied the number of hidden neurons from 1 to 20. All other parameters were 

held constant. Specifically, the 500 measurements points were divided into 250 training points 
and 250 testing points, and we used the conjugate gradient method for training. The average 
testing errors decreased with increasing numbers of hidden neurons until around 14 or 16, where 
the errors were minimized. For more than 16 hidden neurons, the trend reversed and the errors 
appeared to start increasing again. Figure 8 plots the average testing errors as a function of the 
number of hidden neurons for both mappings. 

 
Next, we varied the number of training points from 5 to 250. All other parameters were 

held constant. The number of hidden neurons was set to 14 since we found that to be an ideal 
number from the previous analysis, and 250 testing points were used for verification. Once 
again, both mappings showed similar trends. The average testing errors decreased for an 
increasing number of training points. However, as more and more training points were added, 
diminishing returns on the testing errors were evident. Figure 9 plots the average testing errors as 
a function of the number of training points for both mappings. 

 
Finally, we varied the number of testing points from 5 to 250. All other parameters were 

held constant. The number of hidden neurons was once again set to 14, and the same 250 training 
points were used for model development. Both mappings showed that the average testing errors 
varied little with the number of testing points.  Figure 10 plots the average testing errors as a 
function of the number of testing points for both mappings. 

 
4.3.  Results and Comparison 

 
Based on the results of our sensitivity analysis, we decided to use 250 training points and 

250 testing points to train and verify the two ANN models. We chose to use 14 hidden neurons 
for mapping values from the first five harmonics of a1 and a2  to the first five harmonics of b1 
and 16 hidden neurons for mapping values from the first five harmonics of a1 and a2 to the first 
five harmonics of b2. The testing error was 0.72% for the b1 model and 0.73% and for the b2 
model, with respective correlation coefficients of 0.99997 and 0.99992.  

 
After the ANN models were developed, the nonlinear large-signal S-parameters, S11k1 

and S21k1 (k = 1, 2, …, 5), were obtained by interpolating b1k and b2k from measured results for 
nonzero values of a12, a13, …, a15 and a21, a22, …, a25 to the desired values for a12, a13, …, a15 and 
a21, a22, …, a25 equal to zero. Figure 11 shows the interpolated value of b11 (= S1111⋅a11) when 
a12, a13, …, a15 and a21, a22, …, a25 were set equal to zero, and Fig. 12 shows the interpolated 
value of b21 (= S2111⋅a11) when a12, a13, …, a15 and a21, a22, …, a25 were set equal to zero. 
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Figure 8. Average testing errors as functions 
of the number of hidden neurons for ANN 
models trained to map a1 and a2 to b1 and a1 
and a2 to b2. The models were developed 
using 250 training points and verified using 
250 testing points. 

  
Figure 9. Average testing errors as functions 
of the number of training points for ANN 
models trained to map a1 and a2 to b1 and a1 
and a2 to b2. The models were developed 
using 14 hidden neurons and verified using 
250 testing points. 
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Figure 10. Average testing errors as functions 
of the number of testing points for ANN 
models trained to map a1 and a2 to b1 and a1 
and a2 to b2. The models were developed 
using 14 hidden neurons and 250 training 
points. 

 
 
 
 
Table 2. Differences between the measurement-based, ANN-modeled results and the compact 
model simulated in commercial harmonic-balance software. 
 

Quantity Difference 
(%) 

Difference 
(dBV) 

Quantity Difference 
(%) 

Difference 
(dBV) 

S1111 

S1121 

S1131 

S1141 

S1151 

3.38 
1.23 
3.29 
0.40 
1.67 

-44.5 
-53.3 
-44.8 
-63.1 
-50.6 

S2111 

S2121 

S2131 

S2141 

S2151 

3.95 
7.15 
5.93 
0.72 
0.85 

-43.2 
-38.0 
-39.6 
-57.9 
-56.5 

 



We compared our results to a compact model provided by the manufacturer and 
simulated in commercial harmonic-balance software to get an independent check on our 
methodology. Our comparison was accomplished by providing the simulator with the identical 
biasing conditions on the diode and a stimulus of the same magnitude used in the measurements 
for a11 and setting all other a’s to zero. Providing the simulated circuit with a11 of the same 
magnitude as the measurement should give the same values of b1k and b2k as the interpolated 
values of b1k (= S11k1⋅a11) and b2k (= S21k1⋅a11) determined by the ANN models when a12, a13, …, 
a15 and a21, a22, …, a25 are set equal to zero. Figures 11 and 12 show that the simulated values b11 
and b21 agree with those determined from the measurement-based ANN models. Quantitatively, 
the differences between the ANN and equivalent-circuit models are shown in Table 2. 
 
 

5. Summary 
 

In this paper, we introduced nonlinear large-signal scattering parameters representing a 
new type of frequency-domain mapping that relates incident and reflected signals. Unlike 
classical S-parameters, nonlinear large-signal S-parameters take harmonic content into account 
and depend on the signal magnitudes. First, we presented a general form of nonlinear large-
signal S-parameters and showed that they reduce to classic S-parameters in the absence of 
nonlinearities. We also introduced nonlinear large-signal impedance (Z) and admittance (Y) 
parameters, and presented equations that relate the different representations. Next, we considered 
two simplified cases of a one-port network and a two-port network, each with a single-tone 
excitation. For the one-port network, we showed that the equation relating S and Z reduces to the 
same well-known equation for the linear case, assuming no power is transferred in the form of 
frequency down-conversion. For the two-port case, we extracted input reflection coefficients and  
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Figure 11.  The 250 measurements of b11 
used for training (circles). Values of S1111⋅a11 
were determined from the measurement-based 
ANN model (square) and the harmonic 
balance simulation using a compact model 
(triangle). 

  
Figure 12.  The 250 measurements of b21 
used for training (circles). Values of 
S2111⋅a11 were determined from the 
measurement-based ANN model (square) 
and the harmonic balance simulation using 
a compact model (triangle). 



forward transmission coefficients, which can be useful for designing circuits such as amplifiers 
and frequency multipliers. In addition, we derived a quasi-linear approximation of the output 
reflection coefficient under normal operating conditions. These three two-port parameters allow 
a designer to “see” application-specific engineering figures of merit that are similar to what he or 
she is accustomed to in the linear world. 
 

Next, we illustrated how nonlinear large-signal S-parameters can be used as a tool in the 
design process of a single-diode 1 GHz frequency-doubler. Specifically, we used S1111 to 
determine the input matching network, S2222 to determine the output matching network, and 
S11k1, S21k1 (for k = 1 to 6), and G2 to quantify the performance of the circuit at each stage. By 
the final stage of the design, we had created a doubler with an overall power gain of -9.56 dB, a 
value not far from the maximum possible predicted value of -9 dB. 

 
For the case where a nonlinear model is not readily available, we described a method of 

extracting nonlinear large-signal S-parameters, using an NVNA equipped with isolators and a 
second source. First, we showed how multiple measurements of a nonlinear circuit could be used 
to train artificial neural networks. Then, we extracted the desired S-parameters by interpolating 
the ANN models for all a’s equal to zero other than a11. We checked our approach by comparing 
our results to a compact model simulated in commercial harmonic-balance software, and showed 
that the two methods agree well. We also performed a sensitivity analysis on the ANN networks, 
and discovered the following: (1) The average testing error decreases for an increasing number 
of training points. However, as more and more training points are added, diminishing returns on 
the testing errors are evident. (2) As the number of hidden neurons are increased, the average 
testing error decreases until around 14 hidden neurons, at which point more hidden neurons have 
no benefit and can actually lead to increases in testing error. (3) The number of testing points 
does not drastically affect the testing error.  
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